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FINAL REPORT

ANALYSIS AND DISTRIBUTED CONTROL OF A FORMATION OF
INTELLIGENT SATELLITES

F49620-99-1-0075

K. T. Alfriend
Department of Aerospace Engineering
Texas A&M University

S. R. Vadali
Department of Aerospace Engineering
Texas A&M University

J. L. Junkins
Department of Aerospace Engineering
Texas A&M University

Objectives

1. Develop mathematical models for the dynamics and control of relative motions of swarms of
satellites of a Distributed Satellite System under the influence of gravitational perturbations;
differential atmospheric drag and nonlinear effects.

2. Solve the nonlinear celestial mechanics dynamical system problem of finding the initial
conditions that will result in the desired relative motion.

3. Develop the optimal control strategies and architéctures that will maintain the desired
configuration with minimum fuel and maximize the time interval between maneuvers.
Further, develop optimal rotational slewing strategies for dwelling on targets within the
system constraints.

4. Develop solutions for providing the relative position and attitude information necessary to

- achieve the desired control and mission requirements. Develop algorithms for measurement
and sensing based on novel miniature electro-optical sensors.

Status of Effort

The gravitational perturbations are ever present and to counter their effect requires fuel, and
spacecraft have to carry all their fuel. Thus, the guiding principle of our program is "Use, don’t
fight Kepler". Our approach has not been to not just treat this as a control problem but to utilize
the physics to find the orbits that require the least amount of fuel to control and then develop the
control techniques to minimize fuel consumption. Using this approach we have identified the
non-resonant relative motion orbits that remain close together without thrusting in the presence of
the J, perturbation. Some of the relative orbits obtained for high inclination orbits of the chief
satellite are too large for practical use. We have determined alternative specifications that will
result in mission-specific relative orbits, albeit at the expense of a small amount of fuel. We have
developed a state transition matrix for elliptic orbits under the influence of J,. We have developed
novel feedback control strategies, unique to this problem. A formation maintenance strategy that
will result in uniform fuel consumption among all the satellites, as well as reduced overall fuel
consumption has been completed. We have also developed a strategy for formation resizing using
a dynamics approach. We have developed a method for incorporating some of the nonlinear
effects into the selection of the initial conditions for relative motion orbits.

This effort is now complete and this report is the final report.




Accomplishments

J2 INVARIANT ORBITS

With relative motion about a spherically symmetric Earth the only constraint necessary for periodic
relative motion is that the two orbits have equal energy, i.e., equal semi-major axes. When the gravitational
perturbations are included the equal energy orbit constraint is no longer sufficient for bounded relative
motion; differential nodal precession, differential perigee precession and in-track drift can occur. To
prevent all three of these drifts the two orbits must have equal energy, angular momentum and inclination.
These three constraints severelv restrict the relative motion orbits options. With the J, Invariant Orbit
approach we have identified a class or relative motion orbits that have minimal drift. First, we have
developed the constraint, called ihe “period matching constraint”, that prevents in-track drift and replaces

the equal semi-major axis or equal energy constraint.. This constraint is OM + 6w+ &K2cosi =0, where
M is the mean anomaly, o is the argument of perigee and (2 is the right ascension and / is the chief orbit
inclination. This is the primary constraint that needs to be enforced. An additional constraint can be
applied to prevent out of plane drift. These two constraints yield the J, Invariant Orbits. In this research we
have also shown that relative motion orbits should be designed in mean element space, not osculating
element space. In mean element space the critical elements affecting the drift of the orbits are the three
momenta variables, (a,e,i ) In osculating space all elements affect the drift and design is much more

difficult.

STATE TRANSITION MATRIX ‘

Hill's equations assume a spherical earth and a circular reference orbit. The gravitational
perturbations create a change in orbit period, nodal precession, perigee drift and short and long
period variations of the other orbit elements. Consequently, Hill's equations do not provide a
good estimate of the long term relative motion needed for minimum fuel control. If Hill's
equations are used the control system will misinterpret the cause of some of the relative motion
and make incorrect orbit adjusts. For example, the short period relative motion due to the
equatorial bulge J, could be interpreted as a secular drift and a mismatch in semi-major axis, and
consequently make a semi-major axis adjust that would create secular drift. Consequently, we
need a better dynamic model for the relative motion. We have developed the state transition
matrix for the linearized equations of relative motion when the reference orbit is elliptic and both
satellites experience the effect of J,. This state transition matrix has been developed without
solving the equations of motion. We have developed a method called the "Geometric Method"
that uses the relationship beiween the differences in the orbital elements and the relative state.
This state transition matrix has been developed for both mean and osculating elements. With x as
the difference in radii, y as the in-track curvilinear separation and z as the out of plane curvilinear

separation, X = (x,fc, ¥, j},z,é')r and de as the difference in the orbital elements of the chief and

deputy we can derive
x=3&%,2=(4+aB),a=3/R? (1)
(x,e) denote the osculating elements and the matrices (4,B) are a function of these elements.

From orbit theories we can obtain the solution of the time rate of change of the mean elements
and the relationship between the mean and osculating elements. Thus,

® 1+ J,D"
Oep (2)
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Thus,
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If we are using mean instead of osculating elements D is the identity matrix and
O = CI)m = Em¢mZ;:l (tO)a z:m = (Am + aBm) ' ) (4)

The functional form of 4,, is the same as A4, but the ciements are evaluated using mean elements
rather than osculating elements. However, the matrix B is different because the angular velocity
of the reference frame is different for osculating and mean elements. Using this state transition
significantly improves the prediction of the long-term relative motion as shown in the following
figure, which is for a near circular chief orbit with elements  of
(a=7100km,e = 0.005,i = 70deg) and the desired relative motion orbit is the horizontal plane
circular orbit of radius 500 m. Hill's equations show a substantial secular error growth in the in-
track direction and periodic errors in all three axes. The in-track error growth is due primarily to
the unmodeled Chief orbit eccentricity. The Geometric Method produces errors several orders of
magnitude smaller.
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Figure 2 Geometric Method Errors for Perturbed Near-Circular Orbit

FUEL MINIMIZING/BALANCING FORMATION CONTROL

We have developed a novel formation control approach for reference orbits with small
eccentricity by including and exploiting the J, perturbation. The control effort required to
counter the perturbation on each deputy is directly proportional to its inclination difference. Over
a period of time, the deputy with maximum inclination difference will lose more mass due to fuel
consumption than one with zero inclination difference. Mass imbalance between the satellites
with the same geometric ‘characteristics, will cause variations in the ballistic coefficients, and
hence create differential drag among them. Differential drag is not a concern if all the satellites
have the same ballistic coefficients. The key result is the identification of resonance terms in the




dynamics and introducing an optimal detuning parameter. The control action introduces periodic
variations in all of the mean orbital elements of the deputies. A novel, disturbance
accommodating control design process is utilized for accommodating short period oscillations in
the dynamics and rejecting secular disturbances only. This architecture not only minimizes the
total fuel consumption among all the satellites but also maintains the same, average fuel
consumption of each satellite, over a desired period of time. Analytical solutions are derived for
obtaining the initial conditions of the deputies to populate the desired relative orbit. The
reference solution obtained from Hill’s equations is modified to account for the eccentricity of the
chief’s orbit. The control concept has been verified by performing nonlinear <iiuiulations.

We have extended our analysis to the cases of general periodic orbits, special cases of which
are the circular projection relative orbits (TechSat21) and Circular relative orbits (LISA). The
general expression for the optimal formation rotation rate is of the form

x/ R, =0.5¢,sin(nyt + )
y/ R, =c cos(nyt+a)+c, (%)

z/ Ry =c,cos(nyt +a +9¢)

where Ry is the radius of the chief which is time varying for elliptic orbits. The size and shape of
the relative orbit is specified by the four parameters c¢j,c2,c3, and ¢ . The dynamic phase shift is
introduced through the detuning parameter ¢ , the optimal value of which based upon minimizing
a quadratic performance index is given below:
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Figure 3 shows the cost for the formation of eight satellites, plotted as a function of a for

ig="70°. This plot was obtained by integrating the mean square acceleration for each satellite
over a period of one year. The fuel balancing nature of the controller is obvious from this figure.
The optimality of the concept is clear from Fig. 4 which shows the control cost when ¢ =0. It
should be kept in mind that the performance of the formation will degrade when the first satellite
runs out of fuel. Figure 5 shows the radii of the circular projection orbits computed over a period
of one year. The short period oscillations that have been accommodated by the controller can
easily be discerned from this figure.
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Figure 5 Radii of the Circular Projection Relative Orbits, i, = 70°

NONLINEAR FEEDBACK CONTROL:

A direct method for mapping orbit element differences to their corresponding local Cartesian
coordinate differences has been developed. This mapping is used to construct a hybrid
continuous feedback control law for achieving the desired relative orbit geometry, explicitly
given in terms of orbit element differences. The actual desired orbit is specified in terms of local
Cartesian coordinates. A numerical simulation illustrates the performance and limitations of such
feedback control laws. Using the linearized mapping between the relative orbit coordinates,
causes only a small performance penalty. However, it is advantageous to work in mean element
space when determining the relative orbit tracking error. Figure 6 shows the performance of the
hybrid control law in tracking a specific relative orbit (shown in Figure 6.a), where the J,
gravitational perturbation is neglected. The tracking error obtained using the linear mapping
between Cartesian relative coordinates and orbit elements is shown as a solid line, while the
tracking error if the nonlinear mapping is used is shown as a dashed line. Using the linear
approximation, results in a steady state error of only 1 m.
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Fig 6 Simulation Results using Hybrid Feedback control
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Transitions
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